If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+30t-72=0
a = 3; b = 30; c = -72;
Δ = b2-4ac
Δ = 302-4·3·(-72)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-42}{2*3}=\frac{-72}{6} =-12 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+42}{2*3}=\frac{12}{6} =2 $
| x-3(3x+3)=4-8x | | 7/5x-2=10/5x | | -7x-9=-1+3x | | n/7=-53 | | 7/5x-20=10/5x | | x+5/9=2x-1/2 | | 0.6y+0.02=0.3-0.4 | | -6w=306 | | 7/5x-20=2/5x | | .2x+1/7=0.4 | | 7/5x-2=2/5x0 | | 18-3.9x=7.74+1.9x | | X-14=-2x+7 | | 0=-18k+9k | | 4x+x=-8x+9 | | 4y+8-6y=14-8y | | 3.5-1.2(2m-3)=2.3 | | 8x-2-5x+7=x+3 | | 5x+5/2=25 | | 1x+2=4x | | -3x+5x=3+5x | | 16v^2-256=0 | | 2(7x+35)=56 | | 3^(5x-4)=46 | | 73-17=46+b | | 1/9x-6=3 | | 26=2n | | 4-9x+5(x-2)+12=0 | | -19x-15=-72 | | 2+10v=-10+3v+9v | | 9x-13-8x=-6 | | 3x+1=-6-x |